73 research outputs found

    First-Principles Theoretical Studies of Bulk, Defect and Interface properties of Oxide Semiconductors

    Get PDF
    Oxide semiconductors have been shown to exhibit rich physics related to their bulk, defect and interface properties. First-principles calculations have and will continue to play a major role in developing an understanding of the microscopic origins of these phenomena. In this thesis, first-principles studies are presented for several oxide semiconductors, with a view to understand how their microscopic properties ultimately determine device functionality. In Chapter 3, a detailed study of bulk SrZrO3 and Sr(Ti,Zr)O3 alloys is performed. For Sr(Ti,Zr)O3 alloys with 50% Ti concentration, we find that arranging the Ti and Zr atoms into a 1×1 SrZrO3/SrTiO3 superlattice along the [001] direction leads to breaking of the conduction band t2g orbital degeneracy, which could suppress scattering due to electron-phonon interactions. In Chapter 4, we present an investigation into the properties of native defects and hydrogen in SrZrO3. It is found that oxygen and strontium vacancies are the dominant defects in the absence of impurity doping, and will form deep donor and deep acceptor states, respectively. Hydrogen is found to be amphoteric in this material at different lattice sites; additionally, this impurity forms a stable complex with oxygen vacancies. In Chapter 5, the tendency for ABO3 perovskite oxides with 3dn B-cations to exhibit ferroelectricity and multiferroicity is investigated. Using the LaBO3 series as a model, we find that initially, as electrons are added to the B-cation d orbital, the tendency for the system to exhibit a ferroelectric distortion disappears - however, for high spin d5 - d7 and d8 cations a strong ferroelectric instability is recovered, and this effect is explained within the pseudo Jahn-Teller theory for ferroelectricity. This finding provides a new route for the design of strongly coupled magnetoelectric materials. In Chapters 6 and 7 the fundamental properties of the technologically important oxide heterostructure systems ZnO/MgZnO and SrTiO3/LaAlO3 are characterized. For the latter, we identify a previously unreported mechanism for interface induced magnetism based on surface aluminium vacancies, which will aid in interpreting experimental results for this system and other polar/non-polar oxide heterostructures

    Characterization of esterase activity from the bacteria, Francisella tularensis, the causative agent of tularemia

    Get PDF
    Francisella tularensis is the bacteria responsible for causing the disease tularemia and is listed as one of the top three-biowarfare agents. Among the proteins essential to the virulence and infectivity of F.tularensis are multiple esterases, which are enzymes that break down various ester, thioester, and amide bonds. In this project, the catalytic activity, substrate speci fi city, and structure of a putative esterase from F.tularensis was studied. Latent fluorophores based on the molecule, fluorescein, were unmasked by the enzymatic activity of the esterase and the increase in fluorescence was measured over time to determine how well the e tcrase recognized different substrates. The esterase FlT258 from F. IIJlarensis activated a variety of simple latent fluorophore substrates with catalytic efficiencies ranging from 5075 M s for a simple propyl ester to 294.8 M\u27 \u27s for a teniary e ter. These simple substrates were recognized by the esterase with KM va lues ranging from 0.54 to 2 1.4 f,M , and sterically occluded substrates had significantly reduced kinetic turnover (kc ,) compared to the simplest substrates. In addition to the wild type esterase, the kinetic a tivity of five different variants of the esterase with single amino acid mutations were characterized against two latent fluorophore substrates to determine more information about the binding pocket of the esterase. The kinetic activity of each of the variants decreased significantly from the wild-type enzyme activity and indicated that the binding pocket is fairly invariant to substitution. Activity, 3D structure, and primary structure comparisons suggest that this esterase belongs to the carboxylesterasc family. Although lillie is known about the specific biological role of FTI 0258C and other carboxylesterases from its fanlily, the promiscuity of its enzymatic eclJ\ll) ould Ix uoollO dc\ I P f\u27OlmlJ:tl Jru m,\u3edcl thaI ulIlll 1M Un

    High-throughput calculations of charged point defect properties with semi-local density functional theory—performance benchmarks for materials screening applications

    Get PDF
    Calculations of point defect energetics with Density Functional Theory (DFT) can provide valuable insight into several optoelectronic, thermodynamic, and kinetic properties. These calculations commonly use methods ranging from semi-local functionals with a-posteriori corrections to more computationally intensive hybrid functional approaches. For applications of DFT-based high-throughput computation for data-driven materials discovery, point defect properties are of interest, yet are currently excluded from available materials databases. This work presents a benchmark analysis of automated, semi-local point defect calculations with a-posteriori corrections, compared to 245 “gold standard” hybrid calculations previously published. We consider three different a-posteriori correction sets implemented in an automated workflow, and evaluate the qualitative and quantitative differences among four different categories of defect information: thermodynamic transition levels, formation energies, Fermi levels, and dopability limits. We highlight qualitative information that can be extracted from high-throughput calculations based on semi-local DFT methods, while also demonstrating the limits of quantitative accuracy

    World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection

    Get PDF
    The genetic trait of lactase persistence (LP) is associated with at least five independent functional single nucleotide variants in a regulatory region about 14 kb upstream of the lactase gene [-13910*T (rs4988235), -13907*G (rs41525747), -13915*G (rs41380347), -14009*G (rs869051967) and -14010*C (rs145946881)]. These alleles have been inferred to have spread recently and present-day frequencies have been attributed to positive selection for the ability of adult humans to digest lactose without risk of symptoms of lactose intolerance. One of the inferential approaches used to estimate the level of past selection has been to determine the extent of haplotype homozygosity (EHH) of the sequence surrounding the SNP of interest. We report here new data on the frequencies of the known LP alleles in the 'Old World' and their haplotype lineages. We examine and confirm EHH of each of the LP alleles in relation to their distinct lineages, but also show marked EHH for one of the older haplotypes that does not carry any of the five LP alleles. The region of EHH of this (B) haplotype exactly coincides with a region of suppressed recombination that is detectable in families as well as in population data, and the results show how such suppression may have exaggerated haplotype-based measures of past selection

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore